第四周第三课-Autonomous driving-Car detection
Welcome to your week 3 programming assignment. You will learn about object detection using the very powerful YOLO model. Many of the ideas in this notebook are described in the two YOLO papers: Redmon et al., 2016 (https://arxiv.org/abs/1506.02640) and Redmon and Farhadi, 2016 (https://arxiv.org/abs/1612.08242).
You will learn to:
- Use object detection on a car detection dataset
- Deal with bounding boxes
YOLO
YOLO (“you only look once”) is a popular algoritm because it achieves high accuracy while also being able to run in real-time. This algorithm “only looks once” at the image in the sense that it requires only one forward propagation pass through the network to make predictions. After non-max suppression, it then outputs recognized objects together with the bounding boxes.
Model details
First things to know:
- The input is a batch of images of shape (m, 608, 608, 3)
- The output is a list of bounding boxes along with the recognized classes. Each bounding box is represented by 6 numbers $(p_c, b_x, b_y, b_h, b_w, c)$ as explained above. If you expand $c$ into an 80-dimensional vector, each bounding box is then represented by 85 numbers.
We will use 5 anchor boxes. So you can think of the YOLO architecture as the following: IMAGE (m, 608, 608, 3) -> DEEP CNN -> ENCODING (m, 19, 19, 5, 85).
Lets look in greater detail at what this encoding represents.
If the center/midpoint of an object falls into a grid cell, that grid cell is responsible for detecting that object.
Since we are using 5 anchor boxes, each of the 19 x19 cells thus encodes information about 5 boxes. Anchor boxes are defined only by their width and height.
For simplicity, we will flatten the last two last dimensions of the shape (19, 19, 5, 85) encoding. So the output of the Deep CNN is (19, 19, 425).
Now, for each box (of each cell) we will compute the following elementwise product and extract a probability that the box contains a certain class.
Here’s one way to visualize what YOLO is predicting on an image:
- For each of the 19x19 grid cells, find the maximum of the probability scores (taking a max across both the 5 anchor boxes and across different classes).
- Color that grid cell according to what object that grid cell considers the most likely.
Doing this results in this picture:
Note that this visualization isn’t a core part of the YOLO algorithm itself for making predictions; it’s just a nice way of visualizing an intermediate result of the algorithm.
Another way to visualize YOLO’s output is to plot the bounding boxes that it outputs. Doing that results in a visualization like this:
In the figure above, we plotted only boxes that the model had assigned a high probability to, but this is still too many boxes. You’d like to filter the algorithm’s output down to a much smaller number of detected objects. To do so, you’ll use non-max suppression. Specifically, you’ll carry out these steps:
- Get rid of boxes with a low score (meaning, the box is not very confident about detecting a class)
- Select only one box when several boxes overlap with each other and detect the same object.
Filtering with a threshold on class scores
You are going to apply a first filter by thresholding. You would like to get rid of any box for which the class “score” is less than a chosen threshold.
The model gives you a total of 19x19x5x85 numbers, with each box described by 85 numbers. It’ll be convenient to rearrange the (19,19,5,85) (or (19,19,425)) dimensional tensor into the following variables:
box_confidence
: tensor of shape $(19 \times 19, 5, 1)$ containing $p_c$ (confidence probability that there’s some object) for each of the 5 boxes predicted in each of the 19x19 cells.boxes
: tensor of shape $(19 \times 19, 5, 4)$ containing $(b_x, b_y, b_h, b_w)$ for each of the 5 boxes per cell.box_class_probs
: tensor of shape $(19 \times 19, 5, 80)$ containing the detection probabilities $(c_1, c_2, … c_{80})$ for each of the 80 classes for each of the 5 boxes per cell.
Exercise: Implement yolo_filter_boxes()
.
- Compute box scores by doing the elementwise product as described in Figure 4. The following code may help you choose the right operator:
1
2
3a = np.random.randn(19*19, 5, 1)
b = np.random.randn(19*19, 5, 80)
c = a * b # shape of c will be (19*19, 5, 80) - For each box, find:
- Create a mask by using a threshold. As a reminder:
([0.9, 0.3, 0.4, 0.5, 0.1] < 0.4)
returns:[False, True, False, False, True]
. The mask should be True for the boxes you want to keep. - Use TensorFlow to apply the mask to box_class_scores, boxes and box_classes to filter out the boxes we don’t want. You should be left with just the subset of boxes you want to keep. (Hint)
Reminder: to call a Keras function, you should use K.function(...)
.
1 | # GRADED FUNCTION: yolo_filter_boxes |
Non-max suppression
Even after filtering by thresholding over the classes scores, you still end up a lot of overlapping boxes. A second filter for selecting the right boxes is called non-maximum suppression (NMS).
Non-max suppression uses the very important function called “Intersection over Union”, or IoU.
Exercise: Implement iou(). Some hints:
- In this exercise only, we define a box using its two corners (upper left and lower right): (x1, y1, x2, y2) rather than the midpoint and height/width.
- To calculate the area of a rectangle you need to multiply its height (y2 - y1) by its width (x2 - x1)
- You’ll also need to find the coordinates (xi1, yi1, xi2, yi2) of the intersection of two boxes. Remember that:
- xi1 = maximum of the x1 coordinates of the two boxes
- yi1 = maximum of the y1 coordinates of the two boxes
- xi2 = minimum of the x2 coordinates of the two boxes
- yi2 = minimum of the y2 coordinates of the two boxes
In this code, we use the convention that (0,0) is the top-left corner of an image, (1,0) is the upper-right corner, and (1,1) the lower-right corner.
1 | # GRADED FUNCTION: iou |
You are now ready to implement non-max suppression. The key steps are:
- Select the box that has the highest score.
- Compute its overlap with all other boxes, and remove boxes that overlap it more than
iou_threshold
. - Go back to step 1 and iterate until there’s no more boxes with a lower score than the current selected box.
This will remove all boxes that have a large overlap with the selected boxes. Only the “best” boxes remain.
Exercise: Implement yolo_non_max_suppression() using TensorFlow. TensorFlow has two built-in functions that are used to implement non-max suppression (so you don’t actually need to use your iou()
implementation):
1 | # GRADED FUNCTION: yolo_non_max_suppression |
Wrapping up the filtering
It’s time to implement a function taking the output of the deep CNN (the 19x19x5x85 dimensional encoding) and filtering through all the boxes using the functions you’ve just implemented.
Exercise: Implement yolo_eval()
which takes the output of the YOLO encoding and filters the boxes using score threshold and NMS. There’s just one last implementational detail you have to know. There’re a few ways of representing boxes, such as via their corners or via their midpoint and height/width. YOLO converts between a few such formats at different times, using the following functions (which we have provided):
1 | boxes = yolo_boxes_to_corners(box_xy, box_wh) |
which converts the yolo box coordinates (x,y,w,h) to box corners’ coordinates (x1, y1, x2, y2) to fit the input of yolo_filter_boxes
1 | boxes = scale_boxes(boxes, image_shape) |
YOLO’s network was trained to run on 608x608 images. If you are testing this data on a different size image–for example, the car detection dataset had 720x1280 images–this step rescales the boxes so that they can be plotted on top of the original 720x1280 image.
Don’t worry about these two functions; we’ll show you where they need to be called.
1 | # GRADED FUNCTION: yolo_eval |
Summary for YOLO:
- Input image (608, 608, 3)
- The input image goes through a CNN, resulting in a (19,19,5,85) dimensional output.
- After flattening the last two dimensions, the output is a volume of shape (19, 19, 425):
- Each cell in a 19x19 grid over the input image gives 425 numbers.
- 425 = 5 x 85 because each cell contains predictions for 5 boxes, corresponding to 5 anchor boxes, as seen in lecture.
- 85 = 5 + 80 where 5 is because $(p_c, b_x, b_y, b_h, b_w)$ has 5 numbers, and and 80 is the number of classes we’d like to detect
- You then select only few boxes based on:
- Score-thresholding: throw away boxes that have detected a class with a score less than the threshold
- Non-max suppression: Compute the Intersection over Union and avoid selecting overlapping boxes
- This gives you YOLO’s final output.
第四周第三课-Autonomous driving-Car detection